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ABSTRACT

This thesis describes the design and deployment of netLab, a self-contained lab
environment suitable for use in an upper level networking course. NetLab does
not require special hardware, special permissions, kernel modifications, or multi-
ple computers. The laboratory was designed to emphasize hands-on programming
over device configuration or performance analysis. NetLab uses network engineer-
ing projects to motivate software engineering principles. The main projects are
linkLab and routerLab, the implementations of a layer-2 network protocol and a
layer-3 routing algorithm simulation. Both projects use a physical-layer emulator
providing controllable impairment for thorough testing. The lab has been shown
to be capable of expansion to accommodate different protocols. NetLab is a suc-
cess in that students consistently found netLab to be challenging and exciting,

and all ranks of students advanced their skills.
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1. Introduction

This thesis presents a multi-part lab designed to use networking problems to
motivate Software Engineering principles. Practices such as adherence to pre-
cise specification, careful design, and thorough validation are stressed throughout
netLab. Network Engineering offers an excellent environment for reinforcing these
topics. Network protocols require the ability to interoperate with external imple-
mentations and the unreliable nature of physical mediums allows extensive testing
scenarios.

The synchLab is a tutorial on all of the aspects of multi-threaded program-
ming that will be encountered in the later two projects. Minimal examples are
provided in every step to show the prime principles that are needed in each project.
In 1inkLab, students implement a link-layer protocol in C++. The sliding window
protocol Go-Back-N[1] is used currently. A sliding window allows the transmis-
sion of a “window” of multiple frames, with the idea that the window size should
allow for acknowledgements to be received by the sender before the window has
been filled. Interoperability is stressed through strict adherence to a specified
protocol. Test suites and multiple test cases are provided for each project for
students to gauge their current performance and progress. Test suites are engi-
neered generically to allow for infinite combinations of tests. The final segment,
routerlab, is a project whose goal is to teach router functionality. Students write
code to implement most of the functions of a router. Since Routers are connected
together when tested for correctness, distributed programming issues come into
play. The routing algorithm used in routerLab is the Distance Vector protocol[2].
This algorithm has one main drawback that students are encouraged to solve, the
problem of count to infinity[3]. Count to infinity happens because of the asyn-
chronous manner of Distance Vector. Figure 1.1 displays the situation that can

occur. Routers only keep track of the cost and first hop of destinations in their
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Figure 1.1: Count to Infinity

routing table; for simplicity only the destination and cost are shown. Figure 1.1
part 2 shows a portion of the network becoming unreachable. The count to infin-
ity problem arises when the Router connected to the disconnected portion sees
that one of its neighbors can get to the disconnected portion. Figure 1.1 part
3 shows the Router accepting the new cost to the unreachable section, without
realizing that the path is actually through itself. With each subsequent update,
the Routers will increment their costs to the disconnected section, until one ulti-
mately reaches infinity. Figure 1.1 part 4 shows the first cycle. There are several
approaches to handling this problem such as poison reverse, split horizon, and
triggered updates. The protocol RIP[4] addresses each of these aspects, but adds
more complexity than is desired for a base project. Validation of both projects
is handled by extensive automated testing, code reviews, and informal proofs on
sections of code.

The netLab lab package has been a great success each time it has been de-



ployed. The lab has been used in UVic’s ¢sc450/550 three times in its complete
state. The minimal synchronization examples helped confused students to under-
stand topics they have seen in prior courses. LinkLab takes up the bulk of the
lab, which has students implement a specific link layer protocol.

The best students found the projects challenging enough to require signif-
icant thought. The weak students still succeeded, since enough background ma-
terial and small examples were provided. All ranks of students advanced their
skills which can be hard to do with a single set of material. Each term, graduate
students in CSC450/550 must complete an advanced project as part of the cur-
riculum. Since the completion of netLab, graduate students propose an advanced
project based on either 1inkLab or routerLab. Several interesting ideas for future
development have come from graduate projects.

NetLab is delivered using generic Linux workstations. Students have normal
user accounts with no root priviliges. Three-hour sessions are held once a week,
staffed by a lab instructor. The labs are capped at 15 students to allow hands-
on help with the material. As shown in Table 1.1, there are four main parts to
netLab: synchLab, snifferLab, linkLab,and routerLab. SynchLab and snifferLab
are covered in Chapters 3 and 4; linkLab is covered in more detail in Chapter 6

and routerLab is covered in more detail in Chapter 7.



Week 1

Week 2

Week 3
Week 4
Week 5
Week 6
Week 7

Week 8

Week 9

Week 10
Week 11
Week 12

Lab introduction

synchLab: Posix threads with C++

linkLab:
linkLab:
linkLab:
linkLab:
linkLab:

introduction

debugging with threads, logfile messages
Beta demo

drop-in

Final demo

snifferLab: packet trace analysis

routerLab: introduction
routerLab: Beta Demo
routerLab: drop-in

routerLab: Final Demo

Table 1.1: netLab schedule



2. Related Work

There were several goals to be achieved when creating netLab, such as:
e experience designing and debugging multi-threaded programs,
e hands on experience writing network protocol code,
e interoperability of projects, and
e teaching the importance of thorough testing.

A lab was wanted that emphasized protocol specification and writing code, instead
of simulations. The framework was desired to be simple enough to describe in one
lab setting, yet complex enough to be able to handle a multitude of different
low-level network protocols with ease. Projects were meant to be isolated; if
you are writing a protocol then you should only focus on the protocol instead
of simulation code, initialization, or other network layers. The lab also had to
be able to run on a single Linux machine, with no special permissions. Pre-
existing network topic labs seemed to have very complex frameworks, were too
broad of scope, required networks of machines, emphasized configuration instead
of coding, required custom Linux kernels, or stressed simulation and real world
statistics. The netLab lab package consists of two main projects and the focus
was desired to surround those projects exclusively: linkLab and routerLab.
The student implemented link-layer protocol[1] is called 1inkLab. A link-
layer is a level 2 Open Systems Interconnection (OSI) protocol, of which there
are many variants. Link-layer protocols connect two hosts together for data com-
munication. It is meant for host-to-host transmission over a physical medium and
incorporates the ability to handle unreliable networks via retransmission. The
protocol chosen for implementation in linkLab is Go-Back-N. Other link-layer

protocols that were inspected for possible use were HDLC[1] and PPP[5]. HDLC



is a Level 2 protocol, which allows transmission of synchronous data over a point-
to-point connection. There are several drawbacks to using HDLC though: its
multiple different frame types, byte stuffing, and set window size. HDLC has
distinct frame types for user data, flow and error control, and link management.
The multiple frame types add complexity, which was desired to be kept manage-
able. Byte stuffing also makes the protocol difficult to use. Frames do not have
a length field to describe how long they are; instead byte stuffing is used to pad
frames with a specific pattern to indicate the beginning or end of a frame. Byte
stuffing means that students would have to constantly monitor the link and rec-
ognize bit patterns in the stream. HDLC uses a three bit field in data frames to
handle sequence numbers and the sliding window size is directly tied to it. There
are seven possible sequence numbers in the range so up to seven frames can be
transmitted at once. The complex frame types and limited configurability dis-
counted HDLC as a possible candidate protocol. PPP is an advancemnt of the
HDLC protocol, which allows more configurability and the ability to piggyback
other protocols. The main difference between HDLC and PPP is that PPP is
character oriented, whereas HDLC is bit-oriented. Having the protocol character
oriented makes it easier to be implemented as students do not have to continu-
ously monitor a bit buffer, but can instead monitor for a special character. The
special character dictates that the current frame has been received in full. This
means that PPP frames are always an even amount of bytes, unlike HDLC. Like
HDLC, PPP uses multiple subprotocols to handle data, link control, and network
control. The link control protocol handles bringing connections up, configuring
options, and tearing them down upon completion. Once the link control protocol
has set the connection up, the network control protocol configures the network
layer options, dependant on the network layer selected. Separate network control
protocols are required for each type of network layer that is desired to be used.
Since for our testing the link control and network control protocol options would

be set at compilation time PPP was deeemd too complex. Adding a link control



protocol to Go-Back-N would be a good extension to the project, but this has
been left for future consideration.

The routerLab project is a student implemented router. The Distance
Vector protocol[l] was chosen as the routing protocol to be implemented for the
project. Distance Vector works by having each router monitor connections to its
neighbors. If a topology change is detected, the router sends updates only to its
neighbors, which can lead to a delay in topology changes percolating to the rest
of the network. There are multiple virtual router environments but none that
were suitable for inclusion in netLab. The goal of netLab was tight integration of
both of the projects, as linkLabs intent is to connect student Routers together.
The virtual router environment should be flexible and abstract without requiring
complex configuration or multiple machines. The virtual router environments
inspected were: the Stanford Virtual Router[6], the Click Modular Router|[7], and
VELNETI8]. The Stanford Virtual Router is similar to routerLab, although it
has been designed to operate on IP packets connected to a physical network.
The Stanford Virtual Router requires a server and isolated network, meaning
that it cannot be deployed on standard workstations with no modifications. The
Click modular Router[7] is another virtual router environment, similar to the
Stanford Virtual Router, but requires custom Linux kernel modules running on
an isolated network. Since netLab needed to run on stock Linux machines this was
unacceptable. The University of Western Sydney’s VELNET[8] is a self-contained
virtual network laboratory, which allows implementation of network protocols
and router configuration. VELNET handles its self-containment by placing its
multiple hosts in VMWARE[9] virtual servers, and the lab environment is based
in windows, which is not useful for CSC450/550. VELNET also places most
emphasis on configuration instead of protocol coding.

While there is a multitude of networking lab environments and projects used
by universities today, there was nothing self-contained that met the intended goals.

The lab should be self-sufficient and not require any special permissions for user



accounts. There are several labs designed along similar ideas as netLab. These
labs attempt to achieve different goals though or are either too broad or narrow of
focus to be of use to what was desired. The labs inspected were NIST NET[10],
University of Girona’s Virtual Laboratory for Learning IP Networking[11], and
TinkerNet[12]. NIST NET has useful parts including impairment and full net-
work emulation. All of the emulation and impairment is handled by a custom
Linux kernel, which detracts from its usefulness in netLab. NIST NET is able to
simulate an entire network, but this is geared at testing of protocols on machines
connected through the NIST NET machine. Emphasis is on performance statistics
and accurate emulation over core protocols, as protocols are unimportant to NIST
NET. Since we desired to be able to have netLab able to run on any single Linux
machine, NIST NET’s framework was not suitable as a possible testing frame-
work. The University of Girona’s Virtual Laboratory for Learning TP Networks
contains several good ideas. They allow students to configure virtual network
topologies, choose between a possible combination of IPv4 and IPv6 networks
and utilize Linux network commands on the topologies. The lab does not require
modifications to the Linux kernel, but does require an isolated multi-computer
network. In addition the core of the lab emphasizes configuration of networks
and actual Linux networking commands to handle those networks. Underlying
protocols can be selected, but there is minimal focus on protocol specification and
testing. There are no projects involving coding of protocols or modification of
internal components either. Most of the focus is on handling TP networks and
the problems that can arise in configuring them. Since the main focus of netLab
is hands on programming experience with protocols, and not configuring them,
the lab was not useful. Harvey Mudd College’s TinkerNet comes close to what
was desired of netLab, but does not cover as wide of scope and was developed
after netLab was designed. TinkerNet focuses on real Ethernet packets and all
the OSI[13] layers from link-layer to application layer. TinkerNet has students

implement a range of related projects, with each built on the previous one. Al-



though there is hands on coding experience, the projects are designed to interface
with standard protocols on a live network. Students initially implement functions
to send and receive ARP, IP, and UDP frames[1] on the wire. The final project
has students implement a microprotocol which exclusively deals with fragmenting
and reassembling messages. The TinkerNet framework does not have the testing
capabilities required for netLab, as it is designed to interface with an Ethernet
network. Our emphasis is intended to have students program full protocols, in
order to give them experience with all the subtleties involved. The broad focus
of TinkerNet, which means more smaller projects, its requirement of an external
network, and no testing suite puts it outside of the scope that was desired for

netlLab.
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3. Threading using synchLab

The topic of synchronization is usually covered in operating systems courses. Stu-
dents study basic concepts and the inherent problems with race conditions and
concurrent access. The aim of synchLab is to present threading concretely using
the POSIX [14] thread library. Small examples are utilized for maximum impact.
The focus is understanding that multi-threaded programs behave differently from
one execution to the next, and tactics for writing reliable code despite the differ-
ences.

SynchLab is based on six C++ programs:

e time.cpp : introduces the struct timeval and the accuracy of the usleep

system call.
e createThread.cpp : details POSIX thread creation and management.

e interleave.cpp : displays the arbitrary execution order of statements in

multi-threaded applications.

e shared.cpp : how unprotected memory shared between multiple threads

can be corrupted.

e mutex.cpp : accessing and protecting shared memory between multiple

threads in a C++ application.
e classes.cpp : techniques to utilize threads with C++ classes.

The examples work together to prepare students for practical work with multi-

threaded code.
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3.1 Evaluation of Machine Timing Accuracy

Some students have never been pressed to have their programs running with fine
grained accuracy. This initial exercise measures the execution time of one mil-
lion iterations through an empty for loop. Timing is handled in time.cpp using
the struct timeval and the usleep std library call. A timeval contains fields
for seconds and microseconds. The usleep method delays execution of subse-
quent instructions in the calling thread for a specified number of microseconds.
A library of overloaded timeval operators is supplied by the instructors. The
timevalOperators.h macros enables students to perform standard arithmetic
operations on timevals during execution. A supplementary quiz is given which
has students modify time.cpp to time the accuracy of the usleep std library call.
To accomplish this students must replace the empty for loop of time. cpp, shown
in Figure 3.1, with a usleep(N) call. The program is then adjusted to accept an
unsigned integer on the command line to pass to the usleep method. Students
are required to find the minimum number of microseconds at which usleep is fairly
accurate on average. This is important because usleep is not always precise for
small values, and students should see firsthand usleep is not totally accurate in

timing situations.

3.2 Creating Threads

Since many students have never created a POSIX thread, a concise example is
provided to explain the topic. The example, createThread.cpp, shows how to
start a thread, pass it a parameter, and introduces the thread life cycle. The
thread, T', is passed an integer N and prints the integers 0,1,..., N — 1. When
the main method terminates, however, T is forced to terminate. As a result, the
output is only a prefix of 0,1,..., N — 1. The length of the prefix varies across

executions.



12

3.3 Statement Interleaving

The interleave.cpp example focuses on two questions:

1. What predictions can we make about the execution order of the statements

within a single thread?

2. What predictions can we make about the interleaving of the statements in

two threads?

Students know the answer to the first question: the order is controlled by the
conditional expressions in the if-then-else and loop constructs in the program.
They are less sure about the second question. This program shows that the
interleavings vary from one execution to the next and that no predictions can be
made about the interleavings.

The implementation of interleave.cpp, shown in Figure 3.3, is simple. No
attempt is made to illustrate typical use; instead the interleaving properties of

threads are laid bare with “minimal examples” [15], which focus on a single issue

int main(int argc, charx argv[])

{
timeval tO0,t1;
// retrieve and print the current time
gettimeofday (&t0, NULL);
cout << "Current time: " << t0 << endl;
// to loop one million times and print the elapsed time
gettimeofday (&t0, NULL);
for (int i = 0; i < 1000000; i++)
; // intentionally empty
gettimeofday(&t1l, NULL);
cout << "Elapsed time: " << (t1-t0) << endl;
return 0;
}

Figure 3.1: time.cpp
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void* threadFunction(void* ptr)

{
int *n = (int*)ptr;
for (int j = 0; j < *n; j++) {
cout << j << endl;
}
}
int main(int argc,charx argv[])
{
pthread_t threadStruct;
unsigned int n = atoi(argv[1]);
int r = pthread_create(&threadStruct,NULL,&threadFunction, (void*)&n);
cout << "return code: " << r << endl;
usleep(1000); // pause so that the thread gets some time
return 0;
}

Figure 3.2: createThread.cpp

using the least statements possible. The compute function busy-waits for a random
amount of time, to introduce variable delay. The function threadFunctionA
prints 0,1,...,9, left justified, calling compute each iteration; threadFunctionB
is identical, except that the output is indented one tab stop. The main method
creates threads A and B, and then waits for each thread to terminate before
exiting. Table 3.1 shows the output from running interleave twice. The serialized

output is rare; it is also rare to see two consecutive runs produce the same output.

3.4 Shared Data

Protecting shared data can be key to success in multi-threaded programming.
In shared.cpp, two threads are started which perform identical actions. Each
one repeatedly fetches, increments, and then stores a shared global integer. Most

students assume that, with two threads iterating through the operations described
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void compute() // pause for a random amount of time

{
long var = rand() % 15000000;
for (int 1 = 0; i <= var; i++)
; // empty
}

void* threadFunctionA(void#* ptr) // print 0..9, left justified
{
for (int j = 0; j < 10; j++) {
compute() ;
cout << j << endl;

void* threadFunctionB(void#* ptr) // print 0..9, indented
{
for (int j = 0; j < 10; j++) {
compute() ;
cout << ’\t’ << j << endl;

}

}

int main(int argc,char* argvl[])

{
// create random seed, using current microseconds
timeval seed;
gettimeofday(&seed, NULL);
srand(seed.tv_usec);
// start two threads
cout << "A\tB" << endl;
pthread_t threadi;
pthread_create(&threadA,NULL,&threadFunctiond ,NULL);
pthread_t threadB;
pthread_create(&threadB,NULL,&threadFunctionB,NULL);
pthread_join(threadA,NULL) ;
pthread_join(threadB,NULL) ;
return 0;

}

Figure 3.3: interleave.cpp
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N times, the final value for the shared data will be 2/N. Due to the random nature
of interleaving, however, this is rarely the case. Executions produce a variety of
values in [N..2N].

The shared.cpp code, shown in Figure 3.4, is similar to interleave.cpp.
The difference is that, in the former, only the final result of the interleaving
is presented, as a single integer. Table 3.2 shows two interleavings. The first
interleaving illustrates “safe sharing”; the second is one of many others which can

occur in shared. cpp.

A serialized interleaving | Another possible interleaving
thread A thread B thread A thread B
0 0
1 1
2 2
3 0
4 1
5 3
6 4
7 5
8 2
9 3
0 4
1 5
2 6
3 7
4 8
5 6
6 7
7 8
8 9
9 9

Table 3.1: interleave.cpp: output



int totalCount = 0;

// pause for a random amount of time
void compute ()

{

long var = rand() % 1500000;
for (int 1 = 0; i < var; i++)
; // intentionally empty

// increment totalCount 10 times
void* incrementer(void* ptr) {

for (int i = 0; i < 10; i++) {
int a = totalCount;
compute () ;
totalCount = ++a;

int main() {

// create random seed, using current microseconds
timeval seed;

gettimeofday(&seed,NULL) ;

srand(seed.tv_usec);

pthread_t thread0;
pthread_create(&thread0,NULL,&incrementer, (void*)NULL);
pthread_t threadil;
pthread_create(&threadl,NULL,&incrementer, (void*)NULL);

pthread_join(thread0,NULL) ;
pthread_join(threadl,NULL) ;

cout << "Total count: " << totalCount << endl;

Figure 3.4: shared.cpp

16
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A correct interleaving An incorrect interleaving
thread A thread B thread A thread B
a=totalCount; a=totalCount;
compute () ; a=totalCount;
totalCount=++a; compute () ;

int a=totalCount; | totalCount=++a;
compute () ; compute () ;
totalCount=++a; totalCount=++a;

Table 3.2: share.cpp: interleavings

3.5 Controlling Access to Shared Data

The previous example, shared.cpp, demonstrates the importance of controlling
access to shared data, now controlling the interleavings is addressed. In the
mutex.cpp code, a semaphore is introduced, along with lock/unlock pairs in each
of the two threads of shared.cpp. The semaphores ensure atomic access is en-

forced, therefore the final value is always 2V.

3.6 Accessing Private Instance Data

The classes.cpp example, shown in Figure 3.5, displays how to access private
instance data from a static thread context and how to number object instances.
This is an object oriented spin on a previous example, interleave.cpp. A class
is provided that has a single static method which prints values [1..10]. The class
is instantiated twice, a static constructor variable is used to determine instance
number, and this is passed as a parameter to a thread constructor. With this*
preserved inside the static thread, each instance prints its values [1..10] in a sep-

arate column.



class C {

public:

int threadId;
pthread_t thread;

cO
{
static int threadCount = 0; // total number of C instances
threadId = threadCount++; // id of this instance for messages
pthread_create(&thread,NULL, &threadMethod, (void*)this);
}
static void* threadMethod(void* ptr)
{
Cx self = (Cx)ptr;
for (int j = 0; j < 10; j++) {
compute() ;
if (self->threadld == 0)
cout << j << endl;
else
cout << ’\t’ << j << endl;
}
}
};
int main(int argc,charx argv[])
{
// create random seed, using current microseconds
timeval seed;
gettimeofday(&seed, NULL);
srand(seed.tv_usec);
// start
cout << "A\tB" << endl;
C c0;
C ci;
pthread_join(cO.thread,NULL) ;
pthread_join(cl.thread,NULL) ;
return O;
}

Figure 3.5: classes.cpp

18
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4. Packet Sniffing using snifferLab

Students are introduced to the WireShark (formerly Ethereal) packet “sniffer”
during lectures. WireShark is a program that monitors data traveling over a
network. This lab gives hands-on experience using a sniffer to solve a number
of problems involving the Internet protocols they have seen in lecture. Wire-
Shark’s core functionality is briefly reviewed to remind students how to utilize
the programs functionality. A small list of related program tips is provided to aid
completion of the lab without having to search broadly. The students are given
a capture file containing approximately 3000 frames with an assortment of traffic
such as ICMP, ARP, FTP, P2P, ssh, and HTTPS. A capture file is a recording of
traffic that is received over a network device. Usually to use WireShark to record
a live network students would require root permission. However, since a capture
file is supplied, root permission is not required.

Figure 4.1 shows one screen of frames. Using the capture students must

€  dumpfiles - wwesa®  a0@g]

' file Edit View Go Capture Analyze statistics Help
: mm
BEoea ~2X0 > Y0000 EE Al wME X @
[ Eilter: v dp Expression... = Clear o Apply
No, .  Time Source Destination Protocol 1nfo IJ
1 0.000000 142.104.107.212 142,104.100.1 DNS Standard query A barista.cs.uvic.ca
2 0.0020394 142.104.100.1 142.104.107.212 DNS Standard query response A 142.104.107.116
30.002294  Ibm 7d:2b:42 Broadcast ARP who has 142.104.107.1167? Tell 142.104.107.212
4 0.002595 AsustekC_01:83:61 Ibm_7d:2b:42 ARP 142.104.107.116 is at 00:0c:6e:01:83:61
5 0.002602  142.104.107.212 142.104.107.116 1cMP Echo (ping) request
6 0.002970 142.104.107.116 142.104.107.212 ICMP Echo (ping) reply
7 0.003058 142.104.107.212 142.104.100.1 DNS Standard query PTR 116.107.104.142.in-addr.arpa
8 0.004591 142.104.100.1 142.104.107.212 DNS Standard query response PTR barista.cs.Uvic.CA
9 4.993815  AsustekC_01:83:61 Ibm_7d:2b:42 ARP who has 142.104.107.2127 Tell 142.104.107.116
10 4.993823 Ibm_7d:2b:42 AsustekC_01:83:61 ARP 142.104.107.212 is at 00:0d:60:7d:2b:42
11 4.997563  Intel _cb:db:1la Ibm_7d:2b:42 ARP Who has 142.104.107.212? Tell 142.104.100.110
12 4.997568  Ibm_7d:2b:42 Intel_cb:db:la ARP 142.104.107.212 is at 00:0d:60:7d:2b:42
15 A aoosm Thm 7d:he A2 R Aon \hn ham 147 104 100 13 TAl1 145 104 107 919 =
b Frame 1 (78 bytes on wire, 78 bytes captured) -
b Ethernet II, Src: Ibm_7d:2b:42 (00:0d:60:7d:2b:42), Dst: Intel_cb:db:la (00:02:b3:cb:db:1a)
b Internet Protocol, Src: 142.104.107.212 (142.104.107.212), Dst: 142.104.100.1 (142.104.100.1)
b User Datagram Protocol, Src Port: 32769 (32769), Dst Port: domain (53)
b Domain Name System (query)
0000 00 02 b3 cb db la 00 0d 60 7d 2b 42 08 00 45 00  ........ "}+B..E. o — E
0010 00 40 58 a7 40 00 40 11 f5 Sf 8e 68 6b d4 8e 68 .@X.@.@. ._.hk..h
0020 64 01 80 01 00 35 00 2c 9e 70 f4 f7 01 0O 0O O1 HoweiBuy sPpswnse
0030 00 00 00 OO0 OO0 00 07 62 61 72 69 73 74 61 02 63 ....... b arista.c
‘ File: '/home/b—raul/naTLab/flnalRelease/z?hareamuu/dumpms_'zf P: 143 D: 143 M: 0

Figure 4.1: WireShark raw capture file
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answer a series of questions. The large number of frames in the capture file
prevents manual review to finish the excercise. This allows completion of the lab
on any standard machine with a sniffer. Every question can be answered using
either options within WireShark or by utilizing the filter function. The filter
function allows control over what is displayed to the user. Applied filters can be
as broad as an entire network protocol or as narrow as a single bit set in a TCP
header field.

The quiz contains questions such as:

e What Network Layer protocols are present?

e What Transport Layer protocols are present?

e What well-known TCP or UDP ports[1] are present?

e How many TCP connections are present?

e For each TCP connection, what is the client initial sequence number?

e How many frames are used in one of the prior connections terminations?

e Is there a relationship between initial sequence number and transmission

time?

Figure 4.2 displays how to determine the number TCP connections are
present. To answer the question we filter to look only for TCP frames with the
SYN bit set and the ACK bit unset, since this is the initial frame in the TCP
handshake.



file Edit View 6o Capture Analyze statistics Help
BFcee ~-2X0 - Y0000 EE A Dl WVEX @

v dpExpression... x Clear o Apply

E][ihsnhnv.ﬂnqs.sw «s 1 & top.flags.ack == o

Destination Protocol Info

No. Time Source
| 2312660854 142.104.107.212 142.104.100.105 TCP 32781 > ssh [SYN] Seq=0 Len=0 MSS=1460 TSV=166438 TSER=0 WS=0

32783 > www [SYN] Seq=0 Len=0 MSS=1460 TSV=199826 TSER=0 WS=0

106 46.051612 142,104.107.212 66.102. TCP
32784 > www [SYN] Seq=0 Len=0 MSS=1460 TSV=201272 TSER=0 WS=0

T
131 47.496979 142.104.107.212 66.102.7.99 TCP

~ Transmission Control Protocol, Src Port: 32782 (32782), Dst Port: https (443), Seq: 0, Len: O
Source port: 32782 (32782)

Destination port: https (443)
Sequence number: O (relative sequence number)

Header length: 40 bytes
0x02 (SYN)

Congestion Window Reduced (CWR): Not set
ECN-Echo: Not set

Urgent: Not set

Acknowledgment: Not set

= Push: Not set

Reset: Not set

Syn: set
= Fin: Not set
0000 00 00 Oc 07 ac 7f 00 0d 60 7d 2b 42 08 00 45 00
0010 00 3c a3 59 40 00 40 06 8a d3 8e 68 6b da d8 ef
0020 39 63 80 Oe 01 bb fa 56 a2 fa 00 00 00 00 a0 B
0030 16 do 03 e7 00 00 02 04 05 b4 04 02 08 Oa 00 03 % 4
4P 43 D4 Mo

Flags (tcp.flags), 1 byte

Figure 4.2: WireShark Filtered view
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5. The Emulated Physical Layer: PhysicalLayer

In a real network, the Physical Layer provides an unreliable service. The service
delivers data packets over a network from one host to another. Figure 4.1 shows
the common scenario of data travelling over a network link. Although most packets
are successfully transferred from host A to host B, some are lost in transmission.
The Physical Layer does not detect transmission errors; it merely transmits and

receives bytes.

Host A Host B
Physical Layer A Physical Layer B
N, 7
. o*
0.. R

L *
‘oo Let®
"“agymunns®

Figure 5.1: Bidirectional Physical Layer

5.1 Requirements and motivation

The CSC450 projects deal with high level network concepts. In labs, root access
must not be given for safety reasons; therefore any dealings with low-level net-
working protocols must be emulated. Two C++ classes were designed to handle
the issue, the PhysicallLayer and the NetQueue. The Physicallayer was created
to allow simulated use of a network without any of the security and permission
concerns. The NetQueue was created to control everything transmitted through

a PhysicallLayer.
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To handle the unreliable nature of Physical Layers, three types of impair-
ment are used: kill, corrupt, and delay. These three impairments allow most
problems inherent with networks to be controlled and manipulated in a precise
way. The course projects which use the PhysicalLayer are tested thoroughly, so
the precision helps to discount uncertainty in the results. Three types of impair-
ment are available to the NetQueue: kill, corrupt, and delay. Each endpoint

has independent impairment settings for transmission.

5.2 NQ/PL architecture

A full communication service between two hosts is provided using two
PhysicalLayer instances connected to a NetQueue. A NetQueue maintains two
separate queues, A and B, one for each direction. When a PhysicalLayer is in-
stantiated, it is connected with either the A or B side of a NetQueue. Figure 5.2
shows two Physical Layers with each inserting into one queue and retrieving from

the other queue.

Physicalayer A PhysicalLayer B

L |

Figure 5.2: PhysicalLayer NetQueue interaction

The following files are supplied:

e NetQueue.cpp: unreliable bi-directional communication service which pro-

vides two distinct endpoints.
e NetQueue.h: method prototypes for NetQueue.

e PhysicalLlayer.cpp: single sided access to one endpoint of a NetQueue.
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e Physicallayer.h: method prototypes for PhysicalLayer.

e PLTester.cpp: minimal functionality tester for Physical Layer / NetQueue

connectivity.

5.3 NetQueue interface

The NetQueue class is the heart of the bi-directional communication service pro-
vided. NetQueue manages each direction independently, handles impairment and
uniform delay. Figure 5.3 shows the API for the NetQueue. To conserve space
the figure only shows the method calls for side A, the side B method calls are
identical. In each NetQueue object, maxsize specifies the maximum number of
transmissions that can be queued in each direction. If maxsize is reached during
a NetQueue’s lifetime, an Exception is thrown. The method maxSize () returns
the value set in the constructor. Optionally, a microsecond value for uniform delay
may be supplied to the NetQueue constructor. If the uniform delay is set, each
transmission in each direction will have the same end-to-end delay.

A NetQueue instantiated, with or without uniform delay, provides first-in-
first-out queuing behaviour. Each direction has its own queue to receive from,
and transmits to the other direction’s queue. A standard FIFO queue has limited
functionality and is not used for the implementation in order to handle optional
impairment, described later. Instead a minheap is employed, with a release time
used as the radix for the ordering.

Each side has an add method which inserts the passed data into the opposite
direction’s minheap. Before a transmission is added to the minheap, a timestamp
of the current system time is attached to it. The attached timestamp is used as
the release time to determine a transmission’s availability. It is the caller’s duty
to know if the add call is legal; the sizeXtoY method allows this check without
throwing an Exception.

When the current method is called, the top of the associated minheap’s



25

class NetQueue {
private:
MinHeap *AtoB, *Btol;
struct timeval delay;
unsigned int frameCountA, frameCountB, maxsize;
int killNumA, corruptNumA, delayNumA, killNumB, corruptNumB, delayNumB;
double *killsA, *corruptdA, *killsB, *corruptB;
timeval *delayA, *delayB;

/** Create an empty Link with maximum size maxsize and millisecond delay.
* If maxsize < 1 or maxsize > 100 or delay < O then throw Exception.*/
public:
NetQueue (unsigned int maxsize, long delay);

/** Create an empty Link with maximum size maxSize and delay O.
* If maxSize < 1 or maxSize > 100 or delay < O then throw Exception.*/
NetQueue (unsigned int maxSize) ;

/** Return the maximum number of entries permitted in either
* the A to B portion or the B to A portion of the NetQueue. */
unsigned int maxSize() ;

/** Impair A side * kill, corrupt, and delay masks */
void setImpairA(double* kills, int killNum, double* corrupt,
int corruptNum, longx delay, int delayNum);

/** Add a copy of buf to the A side.
* If sizeAtoB() == maxSize() then throw Exception. */
void addA(unsigned char* buf, unsigned int bufLength) ;

/** Retrieve the next buffer from the A side, without removing it.
* If sizeBtoA() == 0 then throw Exception */
unsigned int currentA(unsigned char* buf) ;

/** Remove a buffer from the A side.
* If sizeBtoA() == 0 then throw Exception. */
void removeA();

/** Determine whether it is legal to remove a buffer from the A side.*/
bool removeLegalA();

/** Return number of elements in the A to B portion of the NetQueue.*/
unsigned int sizeAtoB();

};

Figure 5.3: NetQueue specification
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release time is checked. If the release time is earlier than the current time, the
data is copied into the passed buffer and the length in bytes is returned. The
buffer passed to the current method must be pre-allocated. It is the caller’s
duty to know if the current and removeCurrent calls are legal; the removeLegal
methods allow this check without throwing an exception.

For controlling impairment, there are three different types for each direc-
tion. The constructor is used to specify impairment at instantiation time. The
setImpairment methods are used to override the current impairment, if any, of
a particular side. Both methods accept three arrays; kill, corrupt, and delay.
used as an index, modulo the array length, into each array. The kill array con-
tains floating point values in [0..1]. For a kill array of length N, frame i will be
killed if R < kill[¢i mod N], where R is randomly chosen in [0..1]. The corrupt
array is the same as the kill array, indicating the probability the ith frame is
corrupted. The delay array contains integers which specify the number of mi-
croseconds to delay the ith frame. Each array can be of any size. A counter is used
in each direction which maintains the total number of transmissions which have
occurred and is Kill is the first impairment checked; if a frame is to be killed it is
discarded and there is no reason to corrupt or modify its release time. If a frame
is to be corrupted, a byte in the data buffer is incremented. A delayed frame has
the specified delay added to its release time, so that it is not immediately available

to the other side.

5.4 PhysicalLayer interface

The PhysicalLlayer is a wrapper around the NetQueue class. While the NetQueue
provides a queueing service for bi-directional communication, the PhysicalLlayer
provides access to a single side of the communication. Figure 5.4 shows the
Physicallayer APIL. A Physicallayer is created by passing it an instance of

a NetQueue and a boolean value indicating whether it is the A side or B side.
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/** Provide access to omne endpoint of a Link object. */
class PhysicallLayer

{
private:
NetQueue* link;
bool aSide;
pthread_mutex_t mutexAtoB;
pthread_mutex_t mutexBtoA;
/** Create a PhysicalLayer. */
public:
PhysicalLayer(NetQueue* 1inkO,bool aSide0);

/** Add a buffer. if send sucessfull : true */
bool send(unsigned char* buf, unsigned int bufLength);

/** Return the next buffer. */
unsigned int receive(unsigned char* buf);

};
Figure 5.4: PhysicalLayer specification

Since the communication handled by a NetQueue is usually multi-threaded, two
mutexes are used to protect the shared structure between threads. There are only
two public methods in the PhysicallLayer: send and receive. The Send method
accepts an unsigned char array and its length in bytes, then depending on if the
instance is side A or side B the proper NetQueue method is called and passed
the data. The Receive method checks which side the instance is and calls the
associated NetQueue method. If anything is available, it is copied into the address
represented by the pointer passed to it and the length in bytes is returned. The

receive method requires that the buffer passed to it has been pre-allocated.

5.5 Testing the PhysicalLayer

A tester is included that displays the result of communication using
Physicallayer and NetQueue. Figure 5.5 shows the PhysicallLayer tester. The
tester shown will send three transmissions in each direction and attempt to re-

ceive them. Side A of the NetQueue is set to delay the first by 1000 microseconds,
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int main(int argc, char* argc[])

{
NetQueue nq(3);
PhysicalLayer plA(&nq,true);
PhysicalLayer plB(&ng,false);
unsigned int sendCount = 3, recvCountA = 0, recvCountB = 0, data = O;
double killA[] = {0.0,0.0,1.03};
double corruptA[] = {0,1.0,03};
long delayA[]l = {1000,0,0};
ng.setImpairA(killh,sendCount,corruptd,sendCount,delayh,sendCount) ;
for (unsigned int i = 0; i < sendCount; i++, data++) {
plA.send((unsigned char*)&data, sizeof (unsigned int));
plB.send((unsigned char*)&data, sizeof (unsigned int));
}
while (recvCountA < sendCount || recvCountB < sendCount) {
if (plB.receive((unsigned charx)&data) > 0) {
cout << ’\t’ << data << endl;
recvCountB++;
}
if (plA.receive((unsigned charx)&data) > 0) {
cout << data << endl;
recvCountA++;
}
}
}

Figure 5.5: Physical Layer Tester

corrupt the second, and kill the third. Side B is set to have no impairment. Once
the impairment is set, the three transmissions are sent and then a while loop is
entered until all the frames have been received. Figure 5.6 show the output from

the described setup. Line numbers have been added to the output on the left.

16777217

A W=
[

0

Figure 5.6: Physical Layer Tester Output
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Lines 2, 3, and 4 show what side A receives. The values 0, 1, and 2 were originally
transmitted. Side B, on lines 1 and 5, shows a different output from side A. The
first value side B receives is 16,777,217. The value is not in the range of numbers
that were transmitted so this must be the corrupted transmission. The second
transmission received was the first value, the delay caused it to be misordered.
The program must now be terminated manually, since the last frame was killed

and will never be received.
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6. Implementing a Link Layer Protocol: linkLab

In linkLab, students implement a link layer protocol as a C++ class, as shown
in Figure 6.1. The implementation is based on a sliding-window protocol[1] which
uses pipe-lining for improved performance. The sender keeps a “window” of
frames: those transmitted but not yet acknowledged. Until it is acknowledged,
each transmitted frame must be stored in a “send buffer.” There is a fixed max-
imum for the window size, to limit the buffer space required. If the window is
full, no additional frames are buffered until the window size decreases. Frames
are identified using a sequence number that is incremented with each subsequent
frame. When a acknowledgement frame is received, all frames with a previous

sequence number are removed from the window.

6.1 Link Layer API
Students are given a skeleton class containing three empty methods: the
LinkLayer constructor, send, receive, and an Physicallayer implementation.

The constructor’s task is to initialize the core components of the protocol:

initialize the protocol parameters,

create a window of proper size,

e initialize inbound and outbound sequence numbers to zero, and

start a thread to handle physical layer activity.

The Network Layer passes messages to the LinkLayer send method. If the
send buffer is full, the message must be rejected; every transmitted frame must
be buffered so that a resend is possible. Otherwise, a frame is constructed to hold
the data. A frame consists of a sequence number, an acknowledgement number,

a checksum and a Network Layer message. In the send buffer, a retransmit time
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/** Provides the send side of a simplex go-back-N Link Layer service.
* If the sequence of byte arrays bl, b2, ..., bN is passed to
* LinkLayerSend.send then N calls to LinkLayerReceive.receive will
* return exactly the same sequence of byte arrays.

/* Create a LinkLayer object.

Use sequence numbers 0, 1, ..., maxSegNum.

Use a sender’s window size with maximum size maxWinSize.

For each frame, if an acknowledgement has not been received
successfull within timeout microseconds, retransmit the frame.

Repeat this timeout/resend cycle until the frame has been acknowledged.
If '(0 < maxWinSize <= maxSeqNum) then throw LL_Exception

LinkLayer(unsigned int maxSeqNum, unsigned int maxWinSize,
unsigned int timeout, Physicallayer* physicallayer) ;

/* Send buf to the other side.
* If there is room in the send buffer then
* store buf in the send buffer

* send buf to the other side

* return true, as soon as buf is stored locally

* else

* do not send or store buf

* return false

* If buflLength > MAX_BUF_LENGTH then throw LL_Exception.
*/

bool send(unsigned char* buf,unsigned int buflLength);

/* Retrieve a buffer.
* If any data is available to be retrieved
* copy the data into buf
* return the length of the data
* else
* return O
*/

unsigned int receive(unsigned char* buf);

Figure 6.1: LinkLayer specification
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is stored with each frame. The receive method simply checks to see if there is a
message waiting in the receive buffer. If so, the receive buffer is cleared and the
message is copied into supplied byte buffer. The LinkLayer silently drops any
messages received while the receive buffer is full.

Most of the LinkLayer complexity is in the thread processing, which loops

forever executing the following three tasks:

1. Read the next frame F' from the Physical Layer. Inspect the checksum and

sequence number. If correct, proceed to task 2, else proceed to task 3.
2. Copy the data portion of F' to the receive buffer.

3. Extract the acknowledgement number A from F'. Tterate through the frames
residing in the sliding-window. Delete all frames which have a sequence

number prior to A. Resend all frames which have timed out.
Following is a description of all files supplied:

e AbstractLinkLayer.h: Contains the public API for AbstractLinkLayer

and the API’s for ancillary classes:

— Frame: class used in all link layer transmissions. Frame contains the fol-
lowing fields: sequence number, acknowledgement number, checksum,

data length, and the data segment.

— TimedFrame: a sub-classed Frame used by the Link Layer protocol to
determine when a transmitted Frame has timed out. One additional

field is provided to record the transmission time for the Frame.

— SendBuffer: a size-restricted TimedFrame container, which allows
adding to the end and removing from any position. The SendBuffer
has a linked list as its back end and pre-allocates all memory that will

be used at construction time.

— ReceiveBuffer: a storage container for a single buffer.
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e Exception.h: Used to signal exceptions. The assignment specification de-

scribes the circumstances which require an exception to be thrown.

e LinkLayer.cpp: Contains signatures for the methods that must be imple-
mented. The bodies to the methods are empty except for a return state-

ment.
e LinkLayer.h: Method prototypes for LinkLayer.

e tester.cpp: Sends a specified number of frames between two link layers,

with user-defined impairment.

6.2 Instructor Solution

The instructor solution has been fined tuned and is able to pass all tests we
have designed 100 percent of the time. Many revisions were made to the solution
to achieve correctness. Several different concepts have to be dealt with such
as: the interval over which the sender’s window is sitting, complexity processing
acknowledged transmissions, access to shared data structures between threads,
and keeping code as concise and non-redundant as possible.

A sliding window protocol allows a varying amount of seperate data to be
transmitted at a single time. The send window is represented as a contiguous
range of numbers inside the sequence number range. The size of the send window
must be less than or equal to the maximum sequence number, since the sequence
number range includes zero. The window size must be at least one less than the
total number of possible sequence number values to allow acknowledgement of
previous frames without duplicating a sequence number already in the window.
Sequence numbers provide the ability to keep track of transmitted data. When
data is transmitted, the current sequence number is assigned to it, then the number
is incremented. This allows acknowledgement of individual frames, or a range of

frames, based on an acknowledgement field. When a frame has been received, its



class ModInterval

{
public:
unsigned int low,high,N;
ModInterval()
{3}
ModInterval(unsigned int low,unsigned int high,unsigned int n)
low(low) ,high(high) ,N(N)
{13}
/* returns 1 if x is inside of the current interval #*/
inline unsigned int memberOf (unsigned int x)
{
if (low <= high) { //0 1 2 3 4
return low <= x &% x <= high; // [L H]
} else { //0 1 2 3 4
return low <= x & x < N || x <= high; // H] [L
}
}
/* returns size of current interval */
inline unsigned int size()
{
if (low <= high) { //0 1 2 3 4
return high-low+1; //  [L H]
} else { //0 1 2 3 4
return N-low + high+1; // H] [L
}
}
/* PRE: m.member0f(x) && m.memberOf (y)
* where ModInterval m(low, (high)%N,N)
* returns true if x
inline bool precedes(unsigned int x,unsigned int y)
{
// for wrapped intervals, map x and y to an unwrapped interval
if (high < low) {
if (x <= high) {
x += N;
}
if (y <= high) {
y += N;
}
}
return x < y;
}
s

Figure 6.2: ModInterval

34
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acknowledgement field is checked to see if the other side is acknowledges receiving a
transmission. To acknowledge the sequence number ¢, i+1 mod maxSeq is placed
in the acknowledgement field. Go-Back-N allows only a single transmission to be
accepted at a time until the Network Layer has read it. To take care of lost frames,
an acknowledgement number acknowledges all frames in the window before it as
well as itself. Since the receive end can only accept one single frame at a time, we
know that if an acknowledgment is received for a number inside of the window,
everything before it has been correctly received. The difficulty with sliding window
protocols arises when the sequence number range “rolls over,” meaning the values
inside of the send window could be of the form [N-1,N,0,1,...].

To handle all the special circumstances that can arise within the send win-
dow’s interval, a special class was designed: ModInterval. ModInterval stores
and accesses an interval from the sequence [0,1,..., N-1], with wrapping. The
value N here is the maximum sequence number from the LinkLayer. Because of
the wrapping, the value for low will not always be less than high. If low <= high
then the interval contains a contiguous range of values, [low,low+1, ..., high]. If
low > high then the interval is of the form [low,low+1,...N-1,0,1, ..., high]. Fig-
ure 6.2 shows the methods of ModInterval. Examples in the code comments are
for an interval of size 5, where ‘L’ denotes low, ‘H’ denotes high, and | |’s indicate
the interval. A method, member0f, is provided to tell whether a specific = is in-
side of a ModInterval. The method precedes calculates whether a given x comes
before ¢ in the managed interval. The precedes method is used to determine the
frames affected by a specific acknowledgment number. A size method is also
provided which returns the size of the current interval. All three methods must
handle the case of wrapping in a slightly different way.

When implementing a LinkLayer almost all of the work of the protocol
happens inside a single running thread. This means that several of the LinkLayer
data structures can be accessed across multiple threads. Whenever this is possible,

care must be taken to ensure that, in case of context switch during execution,
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the shared structures internal states remain consistent. There are two affected
parts of LinkLayer: the SendBuffer and the ReceiveBuffer. Whenever data
is sent via the send method it must be inserted into the SendBuffer, which is
scanned to determine re-transmissions. The ReceiveBuffer is also accessed by
the thread and via the receive method. Each of these structures receives its
own mutex to handle synchronization issues. Since the code is well organized,
the ReceiveBuffer must only be protected in two places and the SendBuffer
must be protected in three places. In addition to protecting the two structures,
care must be taken to insure that only the minimal critical sections are protected.
Each critical section must be analyzed carefully so that the full scope is covered.
The resendFrames method determines whether or not there is anything inside
of the SendBuffer that has timed out and should be re-transmitted. Handling
acknowledgements and clearing the SendBuffer is also handled by resendFrames
to keep loop complexity minimal. Figure 6.3 shows the largest critical section
in the solution, located inside of the resendFrames method. The SendBuffer is
locked immediately at the start of the method and remains locked throughout the
execution of the for loop that processes the entire SendBuffer. Some students
do not see the importance of locking the SendBuffer during the whole processing
stage, instead locking and unlocking it during every iteration. This can cause the
SendBuffer to go to an inconsistent state if a context switch happens during an
operation on the SendBuffer. Important as well is making sure that all paths to
exit from the method unlock the mutex so that deadlock does not happen. Since
there are two ways to return from resendFrames there are two separate unlock
calls.

The entire extensively commented instructor solution is 350 lines, including
debugging statements. Much thought was put into the solution to make sure
there is as little redundant code as possible. The method call complexity was
also kept minimal to help when proving correctness. The average length of a

student solution is 500+ lines, and is usually fairly obfuscated. Students have



bool LinkLayer::resendFrames(unsigned int ack,bool ackReceived)
{

bool frameSent = false;

pthread_mutex_lock (&sbMutex); // ****x LOCK

if (sendBuffer.getActiveFrameCount() == 0) {
pthread_mutex_unlock(&sbMutex); // ***** UNLOCK
return frameSent;
}
// create a ModInterval: sendBuffer interval plus one more for ack
unsigned int lastSeq = sendBuffer.last()->seq;
unsigned int firstSeq = sendBuffer.first()->seq;
unsigned int n = maxSeqNumti;
ModInterval ackInterval(firstSeq, (lastSeq+1)%n,n);
// use default ack value if no legal ack passed in
if (lackReceived || 'ackInterval.memberOf (ack)) {
ack = firstSeq;
}
// get base to check for timed out frames
timeval currentTime;
gettimeofday (&currentTime, (struct timezomne *)0);
// free ack’d frames
// resend timed out frames; set frameSent=true if any frames sent
TimedFrame*x tf = sendBuffer.first();
while (tf != NULL) {
if (ackInterval.precedes(tf->seq,ack)) {
tf = sendBuffer.removeCurrent();
} else {
if (tf->tv < currentTime) {
tf->tv = currentTime + timeout;
tf->ack = nextInboundSeq;
tf->checksum = 0;
tf->checksum = tf->genChecksum() ;
frameSent =
physicallLayer->send((unsigned char*)tf,
Frame: :HEADERLEN+tf->datalength) ;
}
tf = sendBuffer.next();

}

pthread_mutex_unlock(&sbMutex); // ***x*x* UNLOCK
return frameSent;

Figure 6.3: LinkLayer resendFrames method

37
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bool LinkLayer::send(unsigned char* buf,unsigned int bufLength)

{
if (bufLength > Frame::MAXDATALEN)
throw Exception("buf too long");

return addToSendBuffer (buf,buflLength) ;
}

// pre: buf has room for Frame::MAXDATALEN bytes
unsigned int LinkLayer::receive(unsigned char* buf)

{
unsigned int size = 0;
pthread_mutex_lock(&rbMutex); // ****x LOCK
if (lreceiveBuffer.empty()) {
size = receiveBuffer.remove(buf);
T
pthread_mutex_unlock(&rbMutex); // ***x** UNLOCK
return size;
T

Figure 6.4: LinkLayer send and receive methods

a hard time realizing that many duties performed by the protocol share much
functionality which is where the bloat comes from. The two public methods, send
and receive, should consist of very few lines of code. Figure 6.4 shows how simple
the method bodies can be in a concise solution. The functionality that the two
methods provide is merely a public request for a service that the protocol does
itself behind the scenes in a few places. Because of this, internal methods were
designed and are called to keep redundancy to a minimum. In student solutions

send and receive can be three to four times longer.

6.3 Testing

There are excellent opportunities for combining teaching and automated
testing[16, 17]. NetLab exploits these opportunities. LinkLab projects are tested

using three different methods: self-pairing, interoperability, and multi-processor
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behaviour.
In the linkLab test code, which is similar between all three testing methods,
two Physicallayer and two LinkLayer objects are created. Using tester param-

eters AtoBtotal and BtoAtotal, a loop is entered. with the following behavior:

e The A side sends AtoBtotal Network Layer messages, with the ith message

containing 7.

e The B side attempts to receive AtoBtotal messages, checking that the ith

received message contains 1.

e The B side sends BtoAtotal Network Layer messages, with the ith message

containing 7.

e The A side attempts to receive BtoAtotal messages, checking that the ith

received message contains 1.

A single test fails when either side receives an out of order message, an incorrect
message, or nothing has been received within a two second time range. Tests are
executed ten times each, and all ten runs must pass in order for credit to be given.

In all, each test case is specified by eleven parameters:

Physical Layer A: kill, corrupt, delay

Physical Layer B: kill, corrupt, delay

Link Layer: maxWin, maxSeq, timeout

Network Layer: AtoBtotal, BtoAtotal

As a result, a large number of interesting test cases can easily be generated.

Student solutions are exercised on tests of increasing difficulty, covering:
e a single network message, without Physical Layer impairment,

e multiple messages without impairment,
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e multiple messages with varying impairments of a single type,
e multiple messages with multiple impairments, and

e stress tests with a large amount of message traffic and complex impairment.

In the networking domain, interoperability is both essential and difficult to
achieve. In linkLab, a student implementation S is first tested with an instance of
S at each Link Layer endpoint. Then, each pair of student implementations, S
and Sy, is tested, with Sy as the A side and S; as the B side. The instructor solu-
tion is also paired with every student solution. Two ruby[18] scripts are used to
accomplish interoperability: namespaceInjector.rb and runAllPairs.rb. First
every source file is prepared using namespacelInjector to insert a unique names-
pace into each student solution. The #ifndef _LinkLayer_ h_ line from every
header file is also changed to match the corresponding namespace. These two
modifications allow instantiation of different implementations of the same class.
A modified tester.cpp is used which contains special symbols denoting the two
namespaces. The runAllPairs script is then executed with the following be-

haviour:

e Choose a pair S5; and S; from all possible pairs of solutions.

Copy a clean tester.cpp to the test directory.

Substitute S;’s for Namespace_A_.

Substitute S;’s for Namespace_B_.
e Run each test ten times and measure the run-time.

Write the results to a file.

Repeat until all pairs have been tested.

Interoperability tests display interesting results. When paired with the in-

structor’s correct solution:
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e Some students who cannot pass the most difficult tests solo will occasionally

pass them.
e Most students with weak results pass more tests.

e Few students pass fewer tests.

This shows that an implementation which appears to be broken might only
in fact be broken on either the send or receive side. Students that pass less tests
stray from the protocol and are not adhering to specification.

The last round of testing is to insure correctness with threading issues. Most
computers have only a single CPU core, so race conditions and synchronization
issues do not always arise. A dual-core workstation and a quad-core server are
used to determine if a student solution behaves differently with multiple cores.
When the tester described above is executed, two linkLayer instances are created;
including the tester thread this gives three running threads. With the quad-core
server each thread in the test process receives a single core. Difficulties with
student solutions become apparent immediately with just a dual-core processor.
Most weak solutions are obvious when the core count is more than one. From a
dual-core to a quad-core machine, the test results are not as radically different,
but only the strongest of solutions are able to pass tests 100 percent of the time.

An interesting note is that execution time can grow greatly from single-core
to multi-core tests. Use of bad synchronization techniques is the typical cause,
with livelock causing the growth in run-time. The most extreme cases have single
core tests finish in 20 seconds and the multi-core tests finishing in 1000 seconds.
Table 6.1 shows a sampling of the test results obtained from the last time netLab
was run. The test case used in the table is called throughput. Throughput has
each side transmit 10,000 frames to the opposite side, with no impairment. The
students chosen for the table passed the throughput test case on single and dual-
core machines 100% of the time. The bottom row is the instructor’s solution test

results. Column A shows the average finish time on a single core machine. Column
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singlecore dualcore  quadcore
avgtime  avgtime numpassed avgtime

21 216 8 250
20 40 4 72
21 219 6 280
22 258 4 250
20 40 8 145
21 185 8 260
23 241 9 240
20 40 7 180
40 670 10 236
60 60 10 64

Table 6.1: SMP test results for throughput test case

B show the average completion time on a dual-core machine. Columns C and D
deal with results from a quad-core machine. Column C is the number of times
passed out of 10 and column D is the average completion time. It’s easy to see from
table 6.1 that many students must have some synchronization issues to cause their
solution to slow down by greater than 100% on average. The results displayed are
from the throughput test, which is a high traffic-test with no impairment. The
instructor’s solution is shown as the bottom entry in the table. While being slower
than some of the student solutions on single-core, the instructor’s has consistent
timing throughout all platforms and all tests. The instructors solution does not

employ optimizations or tricks to speed up execution, stability is the main goal.

6.4 Code Inspection

In linkLab, testing is supplemented by informal code reviews. The idea is
to get each student talking about his/her code in a focused way. The goals are to
determine if a student has control of his/her code and to teach disciplined analysis
of source code. Reviews are also effective at detecting plagiarism; we have found
that most cheaters cannot explain the stolen code. We use two approaches for

code review: (1) code walkthroughs based on test scenarios and (2) fault-based



43

tester sent A to B: 0

added to sendBuffer: [0,0,65531,4,0,0,0,0]

PL sent: [0,0,65531,4,0,0,0,0]

PL sent: [0,0,65531,4,0,0,0,0]
PL received: [0,0,65531,4,0,0,0,0]
added to receiveBuffer: [0,0,0,0]
removed from receiveBuffer: [0,0,0,0]
tester received A to B: 0O
added to sendBuffer: [0,1,65534,0]
PL sent: [0,1,65534,0]

Figure 6.5: Log file sample

inspection.

In linkLab, students are required to implement log file messages, condition-
ally compiled, for debugging purposes. A log file message must be generated for
each add and remove from the send buffer and receive buffer, and for each send
and receive call made to the Link Layer and the Physical Layer. Figure 6.5
shows a log file for a test case which sends a single Network Layer message from
A to B.

Messages from LinkLayer A are shown left-justified; messages from Lin-
kLayer B are indented. The Physical Layer kills the first frame, which times
out, and is then resent successfully and acknowledged. In a walkthrough, the
students must describe the code on the execution path indicated in the log file.
For well-organized code, a walkthrough is straightforward; for sloppy code, it is a
struggle.

Ideally, we would ask students to present correctness proofs for their code.
Such proofs are infeasible in linkLab; even verification experts would find a
LinkLayer correctness proof challenging. Instead, we focus on informal proofs
for simple necessary conditions.

For example, we often ask a student to prove that a particular pointer deref-
erence is legal, i.e., that it will never cause a segmentation fault. Consider the

code fragment in Figure 6.6. Line 6 invokes the first method of the SendBuffer
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class. If sendBuffer is non-empty, then first will return the address of the first
frame; otherwise, it will return NULL. We know that sendBuffer is non-empty on
line 2. Because sendBuffer is locked on line 1 and remains locked through line
6, we know that the dereference on line 6 is legal.

A more interesting example concerns a simple invariant / on sendBuffer
unless the sendBuffer is empty, the frames must be consecutively numbered.
For example, if sendBuffer contains 5 frames, maxSeq is 7, and the first frame
has sequence number 4, then the 5 frames must have sequence numbers 4,5,6,7,0.
The proof is by induction, although that term tends to make the students un-
comfortable. The base case is trivial: sendBuffer is initially empty. For the
induction case, the student must consider each call on the SendBuffer add and
remove methods, and show that, if 1 holds just before each call, then it holds just
after the call. The proof is straightforward for well-organized code: the entire
implementation will have one or two calls to add and one or two calls to remove.

For the instructor’s solution the proof is quite easy for both methods.
There is only one call to add and one call to remove. The add call is in the
addToSendBuffer method, which is called from two places. The first place is the
send method, shown earlier in Figure 6.4. The second is inside of the Thread
method, in the case where a pure ACK is sent. The addToSendBuffer method is

shown in Figure 6.7. The SendBuffer is locked on line 4 and remains locked for

sendBuffer.lock(); // ****+ LOCK

1.

2. if (sendBuffer.getActiveFrameCount() == 0) {
3. sendBuffer.unlock(); // #****x UNLOCK

4. return frameSent;

5

6. unsigned int firstSeq = sendBuffer.first()->frame->seq;

Figure 6.6: Code sample for pointer dereferencing proof
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1 // pre: bufLength < Frame::MAXDATALEN

2 bool LinkLayer::addToSendBuffer(unsigned char* buf,

3 unsigned int bufLength)
4: {

5: pthread_mutex_lock(&sbMutex); // **¥x* LOCK

6: if (sendBuffer.getActiveFrameCount()==sendBuffer.getMaxFrames()){
7 pthread_mutex_unlock(&sbMutex); // #***xx UNLOCK
8 return false;

9: }

10: // build a TimedFrame to be transmitted immediately
11: TimedFrame timedFrame;

12: timedFrame.seq = nextOutboundSeq;

13: timedFrame.ack = nextInboundSeq;

14: timedFrame.checksum = 0;

15: timedFrame.datalLength = bufLength;

16: memcpy (&timedFrame.data[0] ,buf ,bufLength);

17: timedFrame.checksum = timedFrame.genChecksum() ;

18: // add to sendBuffer

19: sendBuffer.addBack(&timedFrame) ;

20: // increment sequence number for next frame

21: nextOutboundSeq = (nextOutboundSeq+1)Y%(maxSeqNum+1);
22: pthread_mutex_unlock(&sbMutex); // #****x UNLOCK

23: return true;

24 }

Figure 6.7: LinkLayer addToSendBuffer method

the duration of the method. The method has two seperate exit points; lines 6 and
22 show the SendBuffer being unlocked so that deadlock does not occur. The
next sequence number is prepared inside the locked portion of the method, on line
21. The current sequence number is first incremented, the remainder of that value
divided by the maximum sequence number plus one is the next sequence number.
The maximum sequence number is a valid value which is why we find the next
sequence number by divide by maxSeqNum plus one. In the case where the current
sequence number is the maximum sequence number, the next sequence number is
0. Incrementing the sequence number inside the locked body prevents an identical
sequence number from being inserted into the SendBuffer. If the sequence num-

ber is incremented outside of the locked portion, a well timed context switch could
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cause a duplicate sequence number to be inserted inside the SendBuffer. Since
the entire method is locked and this is the only place where there are additions
to the SendBuffer, the integrity of the SendBuffer is preserved. Therefore the
add half of the proof is satisfied.

To finish the proof we must look at the remove method. The remove method
is called inside the resendFrames method, shown earlier in Figure 6.3. The
resendFrames is called from the Thread method. The SendBuffer is locked
on line 4 at the start of the method. Lines 7 and 42 show the unlock call for both
possible exit points. One parameter to resendFrames is ack, which is the acknowl-
edgement number of the latest received frame. Lines 11-14 show the creation of a
ModInterval which allows us to determine the validity of ack. The ModInterval
is created using the oldest sequence number in the SendBuffer as the low point
and the latest sequence number as the high point. The SendBuffer is iterated
through to determine if a frame has been acknowledged or needs to be retrans-
mitted. Line 27 shows how we determine if a frame inside of the SendBuffer
is to be removed. The check is performed using the precedes method from
ModInterval. If the sequence number of the frame currently being inspected
precedes ack then it is removed from the SendBuffer. We have already shown
that the addToSendBuffer method guarantees that a contiguous range of numbers
is inside the SendBuffer. A property of Go-Back-N acknowledgement numbers is
that they acknowledge all frames older than the one being acknowledged. Line
28 shows where a frame is removed from the SendBuffer. Since the SendBuffer
is scanned in order, we process the sequence range from oldest to newest. This
means that any time a frame is removed it contains the oldest sequence number
in the SendBuffer. By only removing the oldest sequence number, the integrity
of the sequence range is preserved as the rest will still be a contiguous range of
values. The proof is complete since we have shown that whenever something is
added or removed from the SendBuffer the invariant is preserved.

We have found that it is revealing to have a student talk about his/her code.
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bool LinkLayer::resendFrames(unsigned int ack,bool ackReceived)
{

bool frameSent = false;

pthread_mutex_lock(&sbMutex); // *¥x*x LOCK

if (sendBuffer.getActiveFrameCount() == 0) {
pthread_mutex_unlock(&sbMutex); // ***xx UNLOCK
return frameSent;
}
// create a ModInterval: sendBuffer interval plus one more for ack
unsigned int lastSeq = sendBuffer.last()->seq;
unsigned int firstSeq = sendBuffer.first()->seq;
unsigned int n = maxSeqNum+i;
ModInterval ackInterval(firstSeq, (lastSeq+1)%n,n);
// use default ack value if no legal ack passed in
if (lackReceived || !ackInterval.memberOf (ack)) {
ack = firstSeq;

// get base to check for timed out frames
timeval currentTime;
gettimeofday (&currentTime, (struct timezone *)0);

// free ack’d frames
// resend timed out frames; set frameSent=true if any frames sent
TimedFrame* tf = sendBuffer.first();
while (tf != NULL) {
if (ackInterval.precedes(tf->seq,ack)) {
tf = sendBuffer.removeCurrent();
} else {
if (tf->tv < currentTime) {
tf->tv = currentTime + timeout;
tf->ack = nextInboundSeq;
tf->checksum = 0;
tf->checksum = tf->genChecksum();
frameSent =
physicalLayer->send({(unsigned charx)tf,
Frame: :HEADERLEN+tf->dataLength) ;

}
tf = sendBuffer.next();

}
pthread_mutex_unlock (&sbMutex); // ****x UNLOCK
return frameSent;

Figure 6.8: LinkLayer resendFrames method
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Lab instructors administer the reviews during the beta and final demonstrations,
in about 10-15 minutes per student. It is important to focus the discussion so
that the student does not ramble. Students are expected to be able to describe
the functionality of every aspect of their code thereby ensuring that students
understand what they write. If they cannot explain something they have done
during the review, the student loses marks. A list of possible topics to ask the

student is taken to the review, such as:
e Why some areas of code are or are not protected by mutex.
e What data structure is used to handle frame store and why was it chosen.
e Detail the run time complexity of a single iteration through the main loop.

In addition if the lab instructor notices an obfuscated spot in the students code,

the student is asked to clearly describe what is intended.

6.5 Discussion

While good LinkLayer implementations are relatively short—400 to 600
lines of source code—it is challenging to produce a correct one. And, with thor-
ough testing, few bugs go undetected.

There have been several versions of linkLab. The project was first written
in Java. The Go-Back-N protocol was the implemented protocol then, as it is
now. Initially the data transmission was unidirectional. Since data was only
transmitted in one direction the architecture was quite limited. The receiving
side transmitted acknowledgements only. An acknowledgement was an empty
frame with the sequence number field used as the acknowledgement number. The
send and receive sides were different classes as well, making the project seem
disconnected. The forced simplicity of the project made it of little practical use.

In addition there was no connection to the second course project, routerLab.
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Later 1inkLab was extended to bi-directional communication. This sparked
more interest in the project, since it started looking more like a useful service.
There were several limitations in the second major revision though. The linkLab
API used a send method with a blocking approach, the method would not return
until space was available in the send window for the message. The send method
blocking did not affect the original approach. With bidirectional communication,
though, this simplified the logic too much as there were no special cases, such
as the send windows being full. This ended up being a bit too unrealistic for
effect. The sequence number, acknowledgment number, and checksum were one
byte fields. For the checksum this is no problem. Complicated tests involving
impairment ran the risk of overlapping the sequence number range though. False
positives will arise if the sequence number range is allowed to overlap. The class
level locks that the Java language utilizes took away from having to fully under-
stand the underlying synchronization issues. Most student solutions would have
every method “synchronized”; while being a quick fix this is overkill and causes a
dramatic drop in performance. With the issues that arose in this revision a major
decision was made to move to C++.

The coversion to C++4+ went smoothly, and linkLab turned out to be a
much more elegant project afterwards. Operation was changed to emulate a real
link layer service as closely as possible. Non-blocking transmission was used and
32-bit integers were used for all fields in the frames. Without the ability to
synchronize entire classes, students were finally forced to understand all the race
conditions and be able to identify all critical sections. At this point synchLab
was born as it was necessary for students to experience first hand the different
classic problems inherent with multi-threaded programs, and how to deal with
them. C4+ also allowed full control over memory so when students inspected
frame contents they were able to notice the endianness of their machine. The
entire project was modularized at this point and all aspects were made uniform

throughout all classes and documentation. At this point the project encompassed
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three separate network layers: the physical layer, the link layer, and the network
layer. There have been minimal changes to the API since it was converted to
CH++.

Initially an impairment scheme similar to the final version was used. The
delay impairment technique was the same as now. Corrupt and kill however used
boolean values to specify whether to corrupt/kill a frame. If a particular array
element was true, the impairment would occur. Tests always had to be made with
care since cycles could occur, in which a correct solution could not pass a test,
because progress could not be made. Such could happen if the window size and
impairment mask size were the same size, or the mask contained a cyclical pattern.
If the first frame in the window is always impaired, the test is impossible to finish.
Straightforward cases such as this are fairly easy to avoid, but with the move to
C++, we started finding more tests failing. Test cases would not always fail, only
occasionally getting stuck and usually towards the end of the test. This turned
out to be a case similar to the original, but depended on the interleaving of frames
and the timing within the threads performing the protocol work. Sometimes the
interleaving would set up a case when the send window flushed itself at the end of
the test. When the send windows size reaches the size of the impairment mask, it
is possible that the position the mask is in at the moment is true. This means the
test cannot finish. Figure 6.9 shows the described scenario. Note how sequence
number 24 is always killed, and therefore progress is impeded. The only way to
fix this problem for sure is to ensure that the impairment masks are greater in
size than the send window. This leads to very messy test cases though as window
sizes from 1 to 100 are used. Once this problem arose the offending parts of the
impairment scheme were changed. By using a probability value between 0 and 1.0
we can introduce a bit of non-determinism. Tests now contain high values such
as .99 where they were “true” originally.

The final polish to 1inkLab came in the form of an instructor developed

send window, the SendBuffer, given to students as a starting step. In previous
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terms students were not given the SendBuffer specification or implementation,

and instead were given a full specification of how a send window should operate.

Students had a very hard time designing the data structure though, and many

horrible implementations were developed. Most students by this time had taken

many design courses so this was a very puzzling issue. Issues ranged from overly
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complicated code, to spreading functionality over a great area and not abstracting
the design. Most students who were strong coders didn’t have too much problem
making a send window that worked, although some found the send window the
hardest part to design. Weak students would occasionaly come up with great
solutions, but the major hurdle of having to implement an abstract structure that
generically handles a protocol was too much for some to overcome. The send
window is a very important part of the protocol, but the emphasis was meant to
be on the protocol itself and related issues. To level the playing field, all students
now start out with the SendBuffer and can focus solely on understanding the
protocol.

An odd byproduct of 1inkLab being rather non-trivial arose when the code
base was made in C4++. Students became quite competitive, working to pass all
the test cases that they can develop and trying to come up with special cases that
we might test them on during marking. It has given the lab a good atmosphere
as the students are taking pride in attempting to finish a project 100% to spec-
ification. Students have strived to be the first to produce a solution comparable
to the instructor solution, which passes every test we have designed. The final
revision of the lab has been run through twice, and so far no student solution has
passed every test 100% of the time. Some have come close but due to the severe
nature in which solutions are tested any bug of even the smallest size will come
out. Many students have said that after the completion of 1inkLab they feel that
their overall coding skills have increased more rapidly than through other course
projects.

Even though Go-Back-N is used as the protocol to be implemented the
framework is flexible enough to adapt to other link layer protocols. The test suite
that is included does not required modification to accomodate further protocols.
Experimentation has been done to explore the possible use of TCP selective repeat

as the chosen protocol for future iterations.
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7. Implementing a Router: routerLab

In routerLab, students use C++ to implement a router. A router is a device
that forwards data packets through a network via a routing table. A routing
table contains information on how a router can reach other destinations on the
network and the cost to get there. The current implementation is based on the
Distance Vector protocol, which uses the Bellman-Ford[1] shortest path algorithm.
A network is treated as a weighted graph, where routers are vertices and the links
are the edges of the graph. Every Router has a unique id and Router id’s are
taken from a contiguous range of integers starting with zero. The Distance Vector
protocol uses the Bellman-ford algorithm in a distributed manner where each
router communicates its routing table to each of its neighbours at a specified
microsecond updatePeriod. The routing information transmitted, or Distance
Vector, is an array of unsigned integers representing the full delay in microseconds
of a path. This Distance Vector is copied directly from the routing tables cost
column. Receiving neighbours choose the lowest advertising cost, add this entry
into its routing table, then transmits its updated routing table to each of its
neighbours upon the next updatePeriod. The algorithms completion depends
on the diameter of the network, because complete paths are not produced until
the shortest-path information from the two farthest routers percolates to each
other. The Distance Vector protocol performs the algorithm continuously, to keep
itself and its neighbours updated. FEach router must communicate with other
routers in the network in order to efficiently route packets from host to host.
Echo requests are sent to each neighbouring router to determine delay, every
echoPeriod microseconds. Networks of routers are connected using the 1inkLab
link layer. The LinkLayer uses a scheme which does not handle impairment, since

impairment is not a direct part of the project.
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7.1 routerLab API

Students are supplied with a skeleton class containing four empty methods: the
Router constructor, thread, getID, and getRoutingTable. Figure 7.1 shows the
Router APIL. The thread is where protocol duties are performed. The getID
method returns the unique id of the Router. A copy of the current routing table
is returned by the getRoutingTable method. The getRoutingTable method is
also used to visually determine correctness of a students RoutingTable during
testing.

The Router’s constructor uses the supplied parameters to initialize the core

components required by the protocol:
e saving the updatePeriod,
e saving the echoPeriod,

e allocating arrays of unsigned integers to store a distance vector array from

each connected neighbor,
e copying the initial supplied distance vector arrays into local storage,
e allocating an array of unsigned integers to represent direct link costs,
e copying the initial link costs into local storage,
e allocating space to hold a routing table,

e calculating an initial routing table based on the supplied initial distance

vectors and direct link costs,

e allocating an unsigned integer array to hold the outgoing distance vector,

and

e setting the echoPeriod and updatePeriod first deadlines.
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/* Implement a router using the distance vector protocol.
A router must:
Maintain its routing table using the distance vector algorithm.
Route data frames received from its neighbours.
Periodically send distance vector frames to its neighbours.
FINAL ONLY: Use echo request and reply frames to measure
* link delays to its neighbours. */
class Router : public AbstractRouter
{
private:
/* running thread where main functionality exists. */
static void* thread(voidx);

* K ¥ X ¥

public:
/* Constructor must be implemented for each AbstractRouter subclass.
Initialize the router and start the router thread.
id: the identifier of this router.
numNeighbors: total number of neighbors for this Router.
neighbourIds: neighbourIds[i] contains the id of the router
at the other end of linkLayers[i].
linkLayers: the LinkLayers connecting this router to its neighbours.
linkDelays: linkDelays[i] contains the initial value for
the time in microseconds to send a frame from this router
to the router at the other end of linkLayers[i].
numRouters: total number of routers in the network.
initialDistanceVectors: numNeighbors distance vectors,
each with numRouters entries.
updatePeriod: the time in microseconds between routing table updates.
echoPeriod: the time in microseconds between echoRequest transmissions.
Router (unsigned int id,unsigned int numNeighbors,
unsigned int neighborIds[], AbstractLinkLayerx** linkLayers,
unsigned int linkDelays[], unsigned int numRouters,
DistanceVector** initialDistanceVectors,unsigned int updatePeriod,
unsigned int echoPeriod0);

I S R S B

/** Return the id of this router. */
int getID();

/** Return the current routing table. */
RoutingTable* getRoutingTable();

};

Figure 7.1: Router specification
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The Router thread is started at construction time and left to perform pe-

riodic tasks including:

e forwarding data packets according to the routing table,
e accepting router update packets and using them to update the routing table,
e generating distance vector packets at a specified interval,

e sending echo request packets and monitoring echo reply packets to estimate

link delay, and

e replying to echo request packets from neighbors.
Following is a description of all files provided:

e AbstractRouter.h: Contains the public API and documentation for

AbstractRouter and contains APT’s for ancillary classes:

— RouterFrame: set of class constants which describe one of four different

frame types used in the distance vector algorithm.

* DataFrame: consists of type, destination address, and data length
fields. The data is piggy-backed onto a DataFrame.

x VectorFrame: consists of a type and count field, which holds the
number of entries in the attached distance vector. The actual dis-
tance vector is piggy-backed onto the VectorFrame.

x EchoFrame: consists of a type field and a timestamp field. When
an echo request is transmitted, the timestamp is filled with the
local time. An echo reply maintains the original timestamp and

transmits the value back to determine delay time.

— RoutingTable: the table used for routing. Contains two columns, one
representing the link to forward on to reach the destination Router
and the second is the microsecond delay to arrive at the destination.

Router id is used to index into the RoutingTable.
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— DistanceVector: a wrapper for an array and the array’s length used

for management of distance vectors.

e AbstractRouter.cpp: implementations of ancillary classes from

AbstractRouter.
e Router.h: method prototypes for Router.

e Router.cpp: contains signatures for the methods that must be implemented.

All method bodies are empty except for a return statement.

e betaTester.cpp: tests whether a Router can initialize, update itself, and

route a data frame.
e finalTesterl.cpp: tests whether a Router responds to echo requests.

e finalTester2.cpp: tests whether a Router generates echo requests, and

uses them to update routing table entries.
e LinkLayer: a minimal solution to the earlier project 1inkLab.

Figure 7.2 displays two supplied classes: RoutingTable and
DistanceVector. The RoutingTable is the core routing table that a Router
uses to determine where to forward frames. There are two defined columns and
an implied column in the RoutingTable. The two pointer fields, outLink and
delay, are the defined columns. The implied column is the Router id used when
addressing the outLink and delay columns. The len field holds the number
of Routers in the network, as there must be an entry in the table for every
Router. The outLink field defines the immediate link that a frame would be
transmitted on to reach the destination Router. The delay field is the full path
estimated delay of sending a frame to the specified Router. So, to forward a
frame to Router N, we transmit on link outLink [/N] which will reach Router N

in approximately delay[N] microseconds.
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class RoutingTable

{

public:
unsigned int* outlLink;
unsigned int* delay;
unsigned int len;

/** Create a routing table with all O entries. */
RoutingTable(unsigned int numRouters);

/*x Initializes a routingTable using two integer arrays.
* Accepts parameters:
* ids[i] contains the next hop to get to Router 1i.
* c[i] contains the full path cost to get to Router i. */
RoutingTable(unsigned int* ids,unsigned int* c¢, unsigned int num);

/**Initializes RoutingTable using the contents of another RoutingTable.x*/
RoutingTable (RoutingTable& other) ;

3

ostream& operator<<(ostream& out,RoutingTable& r);

bool operator==(RoutingTable& x,RoutingTable& y);

class DistanceVector
{
unsigned int* dv;
unsigned int len;
public:
DistanceVector(unsigned int* dvO, unsigned int len0);
unsigned int* getDV();
};

Figure 7.2: abstractRouter.h - RoutingTable and DistanceVector

The DistanceVector class is supplied to give students an easy way to handle
multi-dimensional arrays a bit easier in C++. Due to the dynamic nature of the
project, a pure multi-dimensional array cannot be used; we will not always know
all of the dimensions of the array. It is used in the Router constructor when an
array of initial distance vector arrays are required to be passed as a parameter.
The DistanceVector is a wrapper class for an array of unsigned integers and a

length field to determine the contained arrays size. A getDV accessor method is
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class RouterFrame

{

public:
static const unsigned char DATA_FRAME = 1;
static const unsigned char VECTOR_FRAME = 2;
static const unsigned char ECHO_REQUEST = 3;
static const unsigned char ECHO_REPLY = 4;
unsigned int type;

+;

class DataFrame : public RouterFrame

{

public:
unsigned int dstAddr;
unsigned int len; // length in bytes

+;

class VectorFrame : public RouterFrame

{

public:
unsigned int count;

};

class EchoFrame : public RouterFrame

{

public:
timeval transmitTime;

+;

ostream& operator<<(ostream& out,DataFrame& d);
ostream& operator<<(ostream& out,VectorFrame& v);

Figure 7.3: abstractRouter.h - Router frame types

supplied as well to obtain a pointer to the array.

Figure 7.3 shows the different frames that are defined to Routers, supplied
in AbstractRouter.h. These frames are intended for Router-to-Router commu-
nication only. There are four types of frames: DataFrame, VectorFrame, and
two types of EchoFrame. The different EchoFrame types are ECHO_REQUEST and
ECHO_REPLY as detailed in the RouterFrame class definition. Each frame inherits

the type field from RouterFrame to be able to determine its type. A RouterFrame
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is received as an array of bytes and requires a cast to RouterFrame to determine
type. Once type has been determined, the byte array is cast to the proper frame
type. The received frame can have extra data piggy-backed depending on its type;
this extra data is not defined by any class attribute.

The DataFrame encapsulates the generic frames that are transmitted Router
to Router. The DataFrame contains two additional fields: dstAddr and len. The
dstAddr field is an unsigned integer defining a particular Router id, which is the
intended destination for the information. The len field specifies the number of
bytes of data in the DataFrame. The size of the original array should be len
+ sizeof (DataFrame). The byvtes of data are located after all the fields in a
contiguous area. The data is retrieved by indexing the original array.

Periodic network updates are transmitted to neighbours using the
VectorFrame. The VectorFrame works similar to the DataFrame. Since the
VectorFrame is only transmitted to a neighbor Router one hop away, it does
not need an address field. The len field operates like the DataFrame and specifies
the number of bytes of data included after the class fields. The size of the original
array should be count * sizeof (unsigned integer) + sizeof (VectorFrame).
The attached distance vector is an array of unsigned integers, taken from the
delay column of the RoutingTable. Each integer represents the full path cost, in
microseconds, from the sender to another Router in the network. Each implied
index in the distance vector array is an id of a Router in the network.

The EchoFrame is used for timing single hop delay between neighbor
Routers. Periodically a Router will transmit an EchoFrame of type ECHO_REQUEST
to all of its neighbours. The transmitTime field contains the transmission time

of the ECHO_REQUEST. An ECHO_REPLY frame is the response to an ECHO_REQUEST.
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7.2 Instructor’s Solution

The instructor’s solution is a complete implementation of the project. The
solution has not gone through as many revisions as 1inkLab but is considered to
be stable, due to less complexity. The instructor Router passes all tests that have
been designed. The project is in many ways simpler than 1inkLab, but does have
some intricacies that many students miss when they are coding the project. A
Router needs to be coded as a self-contained entity which can discover its network
topology regardless of its own or anyone elses Router id.

Most of the code for routerLab is straightforward. Memory management is
one of the few non-trivial issues that arises. Inside the constructor care needs to
be taken to perform deep copies of all necessary parameters, because of differences
between stack and heap variables. If deep copies are not performed then eventually
the data is overwritten on the stack and the program crashes for seemingly no
reason. Once the constructor has initialized the proper data the, thread method
is started.

The thread method is where the core of the Routers work is performed.
A Router has two main jobs: processing data frames and maintaining network
topology. Figure 7.4 shows the processing half of the duties. Processing frames
requires a Router to iterate through all of its interfaces to see if a frame is available.
If a frame is read, it is cast to a RouterFrame to determine its type. Depending
on the type, the frame is passed to one of four methods. When a DataFrame is
received it is first checked if the destination is itself. If a frame is destined for
itself it is silently dropped. If a frame is for a different Router it is forwarded out
on the interface defined in the outLink entry of RoutingTable for the dstAddr
field from the DataFrame. When a VectorFrame is received it is copied into the
corresponding distance vector for the interface it is received on. These saved
distance vectors are used periodically for RoutingTable updates. When a Router

receives an ECHO_REQUEST, the frame type is modified to ECHO_REPLY and the
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frame is forwarded back to the sender, with the timestamp unmodified. When

an ECHO_REPLY is received, round trip time is calculated by finding half of the

difference between the current time and the transmitTime field. This delay is

stored as the single hop time in the 1inkDelays array.

The second half of a Router’s duties includes updating itself and the rest

void* Router::thread(void* ptr)

{

timeval t1;
Router* owner = (Router*)ptr;
unsigned char tempFrame[116], tempDV[116], tempPing[sizeof (EchoFrame)];
unsigned int bufSize;
RouterFrame* frame;
while(true) {
for(unsigned int i = 0; i < owner->numNeighbors; i++) {

bufSize = owner->linkLayers[i]->receive (tempFrame);
if (bufSize >= sizeof(RouterFrame)) {
frame = (RouterFrame*) tempFrame;
switch (frame->type) {
case RouterFrame: :DATA_FRAME:
if (bufSize == sizeof(DataFrame) &&

bufSize == sizeof (DataFrame)+(DataFrame)frame->len)
owner->processDataFrame (tempFrame, i);
break;

case RouterFrame: :VECTOR_FRAME:
if (bufSize >= sizeof (VectorFrame) &&
bufSize==gizeof (VectorFrame)+(VectorFrame)frame->count)
owner->processVectorFrame (tempFrame, 1i);

break;
case RouterFrame: :ECHO_REQUEST:
if (bufSize == sizeof (EchoFrame))
owner->processPingFrame (tempFrame, i) ;
break;
case RouterFrame::ECHO_REPLY:
if (bufSize == sizeof (EchoFrame))
owner->processPongFrame (tempFrame, i) ;
break;

Figure 7.4: Router thread method - frame processing
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timeval curr;
gettimeofday (&curr,NULL) ;
if (owner->nextEcho <= curr) {
for (unsigned int i = 0; i < owner->numNeighbors; i++) {
EchoFrame* echo = (EchoFrame#*)tempPing;
echo->type = RouterFrame::ECHO_REQUEST;
gettimeofday(&curr,NULL) ;
echo->transmitTime = curr;
owner->linkLayers[i]->send(tempPing, sizeof (EchoFrame));
}
owner->nextEcho = curr + owner->echoPeriod;
}
gettimeofday (&curr,NULL) ;
if (owner->nextUpdate <= curr) {
owner->mergeDVTable() ;
owner—>updatedOnce = true;
for (unsigned int i = 0; i < owner->numNeighbors; i++) {
VectorFrame* v = (VectorFrame*)tempDV;
v->type = RouterFrame::VECTOR_FRAME;
v->count = owner->numRouters;
memcpy (&tempDV [sizeof (VectorFrame)],
owner->outDVTables[i], owner->numRouters*sizeof(int));
tempDV [owner->neighborIds[i]] = owner->updatePeriod * 4;
owner->linkLayers[i]->send(tempDV,
sizeof (VectorFrame)+v->count*sizeof (int)) ;
}
gettimeofday (&curr,NULL) ;
owner->nextUpdate = curr + owner->updatePeriod;
}
usleep(10);

Figure 7.5: Router thread method - Router updating

of the network. Figure 7.5 shows the two separate update duties from the Router
thread: echo requests and routing table updates. The first block is executed every
echoPeriod microseconds. Inside an ECHO_REQUEST frame is built, the current
time is included, and it is transmitted on every interface. The update block is
executed every updatePeriod microseconds. First we execute the Bellman-Ford
shortest-path algorithm on the distance vectors saved from the neighbors. The

routing table update algorithm is shown in Figure 7.6. Costs are calculated by
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void Router::mergeDVTable()
{
pthread_mutex_lock(&rtMutex) ;
unsigned int updatedDelay = 2147483647 ;
unsigned int updatedNextHop = 2147483647 ;
for (unsigned int h = 0; h < numRouters; h++) {
for (unsigned int i = 0; i < numNeighbors; i++)
if (inDistanceVector[i] [h] + linkDelays[i] < updatedDelay ) {
updatedDelay = linkDelays[i] + inDistanceVector[i][h];
updatedNextHop = i;
}
routingTable.delay[h] = updatedDelay;
routingTable.outLink[h] = updatedNextHop;
updatedDelay = 2147483647 ;
}
routingTable.delay[id] = 0;
routingTable.outLink[id] = O;
pthread_mutex_unlock(&rtMutex) ;
for (unsigned int i = 0; i < numNeighbors; i++) {
memcpy (outDVTables[i] ,,&routingTable.delay[0],
numRouters*sizeof (int));

Figure 7.6: Router mergeDV method

taking the lowest full path delay value when comparing the sum of all Routers
costs to a destination and the single hop cost to get to that Router through the
pertinent interface. The lowest value and interface which provides this value are
saved into the RoutingTable. Once shortest paths have been calculated and the
RoutingTable has been updated, the other Routers in the network are alerted.
A VectorFrame is built by copying the delay column from the RoutingTable as
the data. The count field in the VectorFrame is set as the number of Routers in

the network. The VectorFrame is then transmitted on all interfaces.

7.3 Testing

Routers are tested by designing arbitrary networks and running various tests

on them to insure correct results. Students are encouraged to make their routers
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as generic as possible to stay away from pitfalls one might encounter designing
for a single network layout. Multiple different network topologies are used with
each test scenario to make sure this is the case. In addition the network size is
usually larger than the amount of instantiated Routers. These “virtual” Routers
are addressable, but are hidden behind the tester and are used for more compli-
cated routing. Students are supplied with simple initial tests and given diagrams
describing the networks in the test. The tests contain the bare minimum of func-
tionality and test a small subset of features at a time. Tests run on a timeline
with all events for a correct Router expected at specific times. Tests rely on visual
feedback to determine if a student passes or fails, results are inspected on screen
for correctness. There are four main tests in routerLab: betaTester, finalTesterl,
finalTester2, and convergence. The betaTester and two finalTesters are given to
the students, while the convergence test is executed by the instructor.

In the first test scenario, betaTester, the most basic Router functionality
is tested. The focus is on: initialization, updating, and routing. After a Router
is instantiated, its routing table is obtained and printed. The routing tables
correctness is verified using the instructors results. A frame is sent through the
Router to verify it arrives on the correct interface. The Router is then sent a new
distance vector frame on one of its interfaces which it should use to update its
routing table upon the next updatePeriod elapsing. The tester pauses until the
update should have occured, then prints the routing table again for verification.
A final frame is sent through the Router to verify that it will arrive on the new
correct interface.

The second scenario, finalTesterl, tests whether a Router responds to echo
requests. The Router is started, with very high values for pingPeriod and
updatePeriod. The high values ensure that there are not any echo requests or
update frames. After instantiation the tester pings the Router on all its interfaces.
The tester then monitors the interfaces for a correct response from the Router.

If a Router is not following the specification, then invalid update Frames might
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be seen.

The third scenario, finalTester2, tests whether a Router generates echo re-
quests and uses the echo replies to correct an out of date routing table. This time
the Router is instantiated with incorrect values in the linkDelay array, which
contains the delays between itself and its neighbors. The routing table is printed
to check initial correctness. The tester replies to all echo requests that are received
from the Router under test. After an updatePeriod has elapsed the tester prints
the routing table and forwards a frame through the Router. The test succeeds if
the routing table shows that the echo reply round trip time was used for routing
table recalculation and that the frame was received on the correct interface.

The last and most interesting test is one that subjects student Routers to
similar conditions they would experience if their Routers were booted in the real
world. For this test, multiple Routers are instantiated and connected together.
The total number of Routers in the network is greater than the number instanti-
ated, which aids in the diversity of testing scenarios. The “virtual” Routers are
situated “behind” the tester, which allows for the correct path to a “virtual” router
to be validated easily by monitoring the tester links. Convergence testing initial-
izes routers with invalid initial distance vectors and incorrect link costs. All the
initialization data is zeroed, so that every Router has essentially an empty Rout-
ing Table upon construction. Routers have to measure delay to their neighbors
and slowly percolate this data through the network until all routers have enough
information to have identical routing data. The amount of time to converge is
found by multiplying the diameter of the “real” network by the updatePeriod
and adding a small delta. The addition of a small delta to the converge time
gives any “slow” routers extra time to converge. When this deadline has elapsed
Frames are transmitted to a Router on the network and the tester interfaces are
monitored. The test fails if a frame is not received on the correct interface. If a
frame is received correctly, several path costs in the network are modified. The

path delays are updated via NetQueue API calls. After the network re-converges,
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frames are transmitted again to determine if routing information is still consis-
tent. The convergence test has shown bugs in otherwise perfect looking solutions,

which has made it very useful.

7.4 Code Inspection

For routerLab, code review is used again although not in as much depth as
in linkLab. The same methodology applied in 1inkLab is employed here again.
Three areas are inspected: pointer dereferences of received frames, handling of
non-responsive links, and the count-to-infinity problem. Students by now are used
to the format of the demonstrations and are usually quite adept at answering the
questions.

Students must prove that after a RouterFrame has been received, the deref-
erence of its pointer is safe at the forwarding stage. The same pointer dereference
proof is required during demonstration from every student. Due to the limited
size and scope of the project, this may only require a few checks in the code. For
a convoluted solution, this proof can still be very cumbersome as the student is
required to show for a single dereference that the pointer is safe through every
method it has been passed through. The instructor’s solution is quite concise and
the proof is very easy with this code. There are two forwarding methods which
require the proof: processDataFrame and processPingFrame. Figure 7.7 shows
the four process methods, each frame type is handled by its own method. Each of
these methods is called from the thread method, so if the dereference is valid in
the thread method, then the dereference is safe in the frame processing methods.
Figure 7.4 shows the thread method. After a buffer is read from the LinkLayer,
first it is determined if it contains at least as many bytes as a RouterFrame should.
If the RouterFrame is valid, its size is again checked to make sure the buffer is
at least as big as each frame type should be. If the buffer contains the expected

bytes, then dereferencing it is safe as there will be no corrupting or reading of
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void Router::processDataFrame(unsigned char* tempFrame,int i)
{
DataFrame* dataFrame = (DataFrame*)tempFrame;
if (dataFrame->dstAddr == id) // for me
return;
else {
int nextHop = routingTable.outLink[dataFrame->dstAddr];
linkLayers[nextHop] ->send (tempFrame, sizeof (DataFrame)+dataFrame->len);
}
}
void Router: :processVectorFrame (unsigned char* tmpFrame,int intrfceNumber)
{
tmpFrame+= sizeof (VectorFrame);
memcpy (&inDistanceVector[intrfceNumber] [0],
tmpFrame ,numRouters*sizeof (int)) ;
}
void Router: :processPingFrame (unsigned char* tempFrame,int intrfceNumber)
{
EchoFrame* echoFrame = (EchoFrame*)tempFrame;
echoFrame->type = RouterFrame::ECHO_REPLY;
linkLayers[intrfceNumber]->send(tempFrame, sizeof (EchoFrame));
}
void Router::processPongFrame(unsigned char* tempFrame,int intrfceNumber)
{
EchoFrame* echoFrame = (EchoFrame#*)tempFrame;
timeval curr, diff;
gettimeofday(&curr, NULL);
diff = curr - echoFrame->transmitTime;
linkDelays[intrfceNumber] = (diff.tv_sec*1000000 + diff.tv_usec) / 2;

Figure 7.7: Router process event methods

data that should not be.

There are some aspects of routerLab which are very hard to design tests
for, and that have many different ways of being implemented. For these areas
the students are asked to describe how they handle the various situations. The
handling of non-responsive links is always an interesting topic. Students are told
write code to handle the situation, but not to let it interfere with normal operation.

This is important because if a student decides his/her link “goes down” too soon,
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the rest of the network’s routing could be adversely affected. Many different ideas

have been seen such as:

e Deeming a link down when no pings have been received during an entire

updatePeriod, at the end of the updatePeriod.

e Keeping track of non-returned pings, and marking a Router down after a set

number of pings have gone unanswered regardless of updatePeriod elapsing.

o After a deadline, taking the elapsed time for the oldest transmitted ping,

and periodically updating the link cost to this growing value.

While the first two approaches seem fairly good, they do have one drawback: what
if the link just temporarily becomes congested or very slow? Since the general
approach to marking a link down is to make its cost a relative infinity, these meth-
ods will cause immediate updates to percolate network wide. In this case, it is
not desirable to cause a huge routing table update across the network immedi-
ately because the downed host could possibly “wake up” before the updates have
spanned the diameter of the network. The third approach solves this problem;
instead of marking the link’s cost as infinity, the oldest missing pings transmission
time is used as the value. This allows routers to decide gradually how they should
modify their routing tables and allows a path cost to increase significantly without
triggering any ill side effects.

The classic problem of count-to-infinity is also mentioned in the specifi-
cation. Students are encouraged to research the problem and integrate a solu-
tion into their project. The count-to-infinity problem arises when a link from
routerA to routerC goes down and the shortest path from routerB to routerC
is through routerA. If the cost of routerB to routerC through routerA plus the
cost of routerB to routerA is less than any other path to routerC that routerA
has available, then a cycle emerges. This will cause routerA to see the short-

est path to routerC through routerB, while routerB sees the shortest path to
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routerC through routerA. There are many documented approaches to handle the
issue. The approach most commonly seen uses split horizon combined with poi-
son reverse[19]. With this approach, when distance vectors are transmitted they
are modified. The routing table is referenced to find any destinations which go
through the distance vector’s intended receiver. Wherever this is found the path
cost is increased to a very large amount. This prohibits single hop router loops,
but does not do anything for multi-hop loops[20]. We do not test for loops with
our test cases and do our best to ensure that loops do not happen. This means

any drawbacks of the approach do not adversely affect the student.

7.5 Discussion

The RouterLab specification was developed as a way to have students imple-
ment a second aspect of networking. In previous offerings of CSC450, the second
course project was a networked game of the students choice. Some students did
not enjoy this project because it required use of a graphics toolkit and emphasized
gaming logic over lower level networking topics. A simulated router seemed like
a good candidate, since almost every student owns a router.

There is less code to write for a correct routerLab solution than for the
previous LinkLayer project. Even with less code to write, students have shown
they have a harder time visualizing routerLab. Since a router is a self-contained
autonomous unit, students must think deeply how to perform the router’s du-
ties. Simple generic operations, such as forwarding, are straightforward in the
implemention due to the use of unsigned integers. Maintaining network topology
transparently requires understanding the abstraction exactly in order to function
as any Router.

Although it is not as mature a project as linkLab, routerLab has shown
much promise. The first incarnation of routerLab had it as a disjointed project,

that shared a couple similar looking API’s but no actual classes. The goal all along
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was to have the two projects work together though so API’s of the two projects
were developed side by side. Thus, the concept of a “Link” from the original
routerLab ended up as the NetQueue, which is now the backbone of 1inkLab as
well now.

Similar to 1inkLab, routerLab started out as a project coded in Java. Also
like 1inkLab, it used a busy wait technique when transmitting out from an in-
terface. Busy wait was switched to non-blocking in the next iteration when the
project was converted to C++ along with 1inkLab. Although the internal work-
ings have been drastically changed, the project itself has not evolved as much as
linkLab. Since linkLab was already a bit mature when routerLab was created
some of the impending difficulties might have been avoided with experience. The
API is still almost exactly the same, Java and C++ differences withstanding.
Only one additional parameter has been added to the constructor, the period at
which to ping.

There are many areas where routerLab could be enhanced.

e Automatic network generation, which would help during the initialization

phase, currently the most time consuming part.

e Using dotted-quad IPv4 addressing schemes for a Router and hosts under

the Router.

e Allow for multiple subnets and gateway protocols for routing amongst the

subnets.

e Network visualization showing Routers, frames, updates, and routing tables

for a configuration and test case.

e Interactivity with the visualization where Routers could be “killed” or

frames could be sent on the fly.

Several of these and additional ideas were supplied by students, some of which
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would greatly enhance the project. One student suggested modifying the architec-
ture slightly to be an effective load balancer between several internet connections.

Students were usually very positive about routerLab. The fact that
Routers are connected together by implementation of the same LinkLayer service
from the first project drew much interest. Many students desired to have further
more advanced projects based on routerLab, since the architecture is smaller and
requires less code for implementations.

The routing protocol used for routerLab has always been the Distance Vec-
tor protocol. However the architecture is robust enough to handle any other
routing protocol. The link-state protocol has been implemented roughly as a test
for future implementations. Some of the supplied test programs will not work
as expected with other protocols. The convergence test program, which is not
currently supplied to the students, is robust enough to handle any protocol due

to its nature of allowing a network to converge.
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8. Conclusions

The purpose of netLab was to push students towards better software engineering
practices using network engineering principles, such as adherence to precise spec-
ification, careful design, and thorough validation. This goal was consistently met
every term, with some students commenting that their skills advanced faster over
the course of the lab than the rest of the curriculum. We think this is because of
the forced adherence to strict specification, testing, code review, and unification of
APT’s throughout the lab. Students witnessed firsthand the necessity of adhering
to the principles since network interoperability demands it.

The five parts of the lab each contributed a unique learning experience and
furthered software engineering skills. The synchronization lab, synchLab, was
highly regarded by all students. The ability to demonstrate many classical syn-
chronization issues in ways that applied to current programming projects helped
them understand complications they might have only seen minimally in an oper-
ating systems course. Snifferlab gives hands on experience with a packet sniffer,
WireShark, to teach more about internet protocols and to use that knowledge to
solve problems using a capture file.

The Physicallayer turned into an extremely powerful simulated network
service and allowed connection of linkLab and routerLab. The data link layer
project, 1linkLab, reinforced several very important topics: concurrency, specifi-
cation adherence, interoperability, and execution speed. Students could witness
the effect of poor synchronization code or bloat that would cause extremely slow
finish times for tests. Competition always arose with 1inkLab as well, which made
every student take pride in their code and strive to have better test case perfor-
mance than their peers. Many of the weakest students that were able to complete
linkLab gained enough skills by the end of the project to be able to be on par

with the top students for routerLab.



74

The final project, routerLab, was an excellent closing project. It showed
that, even with a much smaller code base than 1linkLab, the complexity could be
just as great. Coordinating multiple autonomous entities displayed the importance
of timing independent algorithms and interoperability. The convergence tester is
the most interesting aspect of this project as it allows the router to be tested in a
situation that closely resembles a real network restarting. The convergence tester
also allows many different routing protocols to be plugged into routerLab and
tested with minimal modification.

The lab is ready to be deploved in future courses. Also, netLab was de-
signed with future use in mind so different protocols and test suites are very easy
to develop. This makes netLab an excellent research tool in various levels of com-
puter science courses dealing with algorithms, operating systems, and networking

topics.
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